Staircase Macdonald polynomials and the q-Discriminant

نویسنده

  • Adrien Boussicault
چکیده

We prove that a q-deformation Dk(X; q) of the powers of the discriminant is equal, up to a normalization, to a specialization of a Macdonald polynomial indexed by a staircase partition. We investigate the expansion of Dk(X; q) on different basis of symmetric functions. In particular, we show that its expansion on the monomial basis can be explicitly described in terms of standard tableaux and we generalize a result of KingToumazet-Wybourne about the expansion of the q-discriminant on the Schur basis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Factorisation of Macdonald polynomials

1. Macdonald polynomials Macdonald polynomials P λ (x; q, t) are orthogonal symmetric polynomials which are the natural multivariable generalisation of the continuous q-ultraspherical polyno-mials C n (x; β|q) [2] which, in their turn, constitute an important class of hyper-geometric orthogonal polynomials in one variable. Polynomials C n (x; β|q) can be obtained from the general Askey-Wilson p...

متن کامل

A Combinatorial Formula for Non-symmetric Macdonald Polynomials

We give a combinatorial formula for the non-symmetric Macdonald polynomials Eμ(x; q, t). The formula generalizes our previous combinatorial interpretation of the integral form symmetric Macdonald polynomials Jμ(x; q, t). We prove the new formula by verifying that it satisfies a recurrence, due to Knop and Sahi, that characterizes the non-symmetric Macdonald polynomials.

متن کامل

Macdonald polynomials at t = q k

We investigate the homogeneous symmetric Macdonald polynomials Pλ(X; q, t) for the specialization t = q. We show an identity relying the polynomials Pλ(X; q, q) and Pλ “ 1−q 1−qkX; q, q k ” . As a consequence, we describe an operator whose eigenvalues characterize the polynomials Pλ(X; q, q). Résumé. Nous nous intéressons aux propriétés des polynômes de Macdonald symétriques Pλ(X; q, t) pour la...

متن کامل

Recursion and Explicit Formulas for Particular N-Variable Knop-Sahi and Macdonald Polynomials

Knop and Sahi simultaneously introduced a family of non-homogeneous, non-symmetric polynomials, Gα(x; q, t). The top homogeneous components of these polynomials are the non-symmetric Macdonald polynomials, Eα(x; q, t). An appropriate Hecke algebra symmetrization of Eα yields the Macdonald polynomials, Pλ(x; q, t). A search for explicit formulas for the polynomials Gα(x; q, t) led to the main re...

متن کامل

Bivariate Knop-Sahi and Macdonald polynomials related to q-ultraspherical functions

ABSTRACT: Knop and Sahi introduced a family of non-homogeneous and nonsymmetric polynomials, Gα(x; q, t), indexed by compositions. An explicit formula for the bivariate Knop-Sahi polynomials reveals a connection between these polynomials and q-special functions. In particular, relations among the q-ultraspherical polynomials of Askey and Ismail, the two variable symmetric and non-symmetric Macd...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008